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Summary 

The uptake of solutes from aqueous solutions by plastic containers has received considerable attention in recent years. 
However, the loss of solute from aqueous solutions during flow through plastic tubing has not been as extensively investigated. In 
th~s work, the authors present four models to describe the sorption of solute during flow through tubing. These models represent 
the solution as either a well-stirred compartment or convection flow in a tube, and the plastic as either a well-stirred compartment 
or a matrix m which diffus~on occurs in a radial direction. The time course of outflow solute concentrations observed 
experimentally after solute infusion into either Tygon or polyvinylchionde tubing was well described by the analytic solutions 
obtained. The diffusion models appeared to give the more satisfactory fit of the data, However, the data fit showed only small 
qualitative differences compared to the compartment models. A number of parameters are required to define each model hmitlng 
their usefulness. Accordingly, a number of simulations were undertaken to determine the relative effect of each parameter on the 
outflow concentration profile. As anticipated, the flow rate, the plastic water partmon coefficient and the nature of the tubing were 
important. Extenswe loss is most hkely at low flow rates when a solute has a high affinity for the infusion tubing. 

Introduction 

The loss of ni t roglycerin dur ing  infusion through plastic adminis t ra t ion  sets has previously been  
repor ted  (Cossum et al., 1978; Crou thame l  et al., 1978). Each c o m p o n e n t  of the admin is t ra t ion  set (bag, 
bure t te ,  chambe r  and  tubing)  has b e e n  shown to absorb ni t roglycerin (Rober ts  et al., 1980; Baask¢ et al., 
1985). The  effect of  flow rate  has been  demons t r a t ed  for o ther  substances  such as isosorbide dini t rate ,  
d iazepam and  chlormethiazole  (Hancock  and  Black, 1980; Baaske and  A m a n n ,  1985). 

A n u m b e r  of models  have been  used to describe the uptake  of solutes by plastic infusion bags whereas  
the models  available to describe the loss of solutes infused through tub ing  are limited. The  models  used 
for infus ion bag kinetics include an  equi l ib r ium par t i t ion  model  (Sturek et al., 1978), an open  compart-  
men t  model  (Malik et al., 1980), a s imple diffusion model  (Yuen  ¢t al., 1979; Rober t s  et al., 1980) and  
complex diffusion models  account ing  for solute ionisat ion and  aqueous  diffusion layers adjacent  to the 
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plastic (Kowaluk et al., 1986). A comparison of the available models would suggest that the diffusion 
model is the most appropriate to describe solute uptake (Kowaluk et al., 1986). More recently, we have 
shown that the initial uptake of solutes in infusion bags may be expressed in terms of a single sorption 
number and may be predicted, with limited accuracy, from the octanol-water partition coefficient for the 
solute (Roberts et al., 1991). 

Two types of models have been used to describe the time course of drug uptake by administration 
sets: a convection model and a compartment model. The convection model takes into account the decline 
in concentration along the tubing length (Kowaluk et al., 1982) but has been limited to a simple 
first-order irreversible loss of solute (Kowaluk et al., 1982, 1983). The compartment model assumes that 
the solute is first adsorbed onto the surface of the plastic and then dissolved instantaneously throughout 
the plastic (Amann and Baaske, 1982). This model assumes that the solution within the tube can be 
described as being in a well-stirred compartment and does not take into account the observed decrease 
in the concentration along the tube. More recently, Roberts (1992) has expressed the initial loss of solute 
from solution infused through tubing by a convection-diffusion model in which the plastic is assumed to 
act as an infinite sink. 

In this study, we have examined mechanistic models for the solute loss during the infusion of solutions 
through the tubing component of the administration sets. These models are based on the premise that 
the uptake of drugs is governed by the convection of the fluid in the tubing and the nature of the solute 
transport in the plastic. In order to simplify the mathematical model, we have assumed that the following 
steps do not contribute to the overall process: (i) longitudinal diffusion of solute in the flowing solution, 
(ii) longitudinal diffusion of solute in the plastic and (iii) the laminar flow of the fluid. Four models are 
considered and are based on the two models used to describe convection down the tube, namely, the 
well-stirred model (concentration along the tube is assumed constant) (Amann and Baaske, 1982) and a 
plug flow of fluid down the tube with no longitudinal diffusion (Kowaluk et al., 1982, 1983; Roberts, 
1992) combined with two models to describe uptake into the plastic - a compartment model and a 
diffusion model. Each of these models has been expressed in cylindrical co-ordinates and is used to 
compare experimental data with model predictions. We also consider approximations of these models 
that may render them more useful in a clinical context. 

Materials and Methods 

Experimental data were generated by running the aqueous solution from a constant level reservoir 
through a tap into a vertical section of Tygon tubing of internal and external diameters 0.79 and 1.1 cm, 
respectively, cut to the required length. Constant level was maintained by the use of an inverted flask 
containing solute in the neck of the reservoir container. 

Flow rate was controlled by the use of tapered glass capillaries inserted into the distal end of the 
tubing. 

Effluent was collected into individual tubes in a fraction collector and all times indicated in this work 
are the mid-points of the time intervals used. All chemicals used were of Laboratory Reagent quality. 

Effluent concentrations were determined using ultraviolet spectrophotometry at the previously deter- 
mined wavelength of maximum absorption. All compounds used obeyed Beer's law. 

Theory 

Each of the models being used in this work is represented schematically in Fig. 1. We now consider 
the mathematical formulation of each model. 
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Well-stirred-compartment model  
In the convection of fluid through a well-stirred compartment the concentration, at time t, Cs = Cs(t) 

of the solute in the solution in the tube (compartment) is independent of distance along the tube 
(compartment). The solute concentration in the solution leaving the tube is also equal to that in the tube. 
Loss occurs through the tubing walls by a transfer of solute from the solution to the plastic with an 
apparent coefficient, K = C~ure/C s, where Csurf is the concentration on the surface of the plastic. The 
concentration in the plastic, Co(t), is also taken to be constant with respect to distance along the tube. 
The equations governing the rates of change of Cs and Cp are then given by: 

2 dCs 
l,ara ---~ = rra2v(  Co - Cs) - 2rrak , l (  K C  s - Cp), (1) 

dCp 
~'(b 2 - a 2) - - ~  = 2 ¢ r a k , ( K C  s - Cp) - 2zrbkoCp,  (2) 

where v is the rate of the flow, a and b denote the inner and outer  radii of the tube, 1 is the length of 
the tube and k, and k o represent the rates of transfer across the inner and outer  surfaces of the tube. 
The initial conditions are given by Cs(0) = C 0, Cp(0) = 0. Eqns 1 and 2 may be written in the form 

dCs 
dt  = alCs +/31Cp + Q C ° '  (3) 

dCp 
dt  = a2Cs +/32Cp (4) 
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where Q = t , / l ,  a I = - Q  - 2 k , K / a ,  Ot 2 = 2 k , a K / ( b  2 - a2), /3j = 2 k , / a  and /32 = - 2 k , a  - 2 b k o / ( b  2 - 
a2). Solving Eqn 4 for Cp in terms of C, we obtain 

C o = a  2 Cs e x p [ / 3 2 ( t - , ) ]  dr .  (5) 

Substituting into Eqn 3 gives 

dC~ t 
- a lC  S +/31az foC s exp[/32(t - r ) ]  dz + QC o (6) 

dt  

Taking Laplace transforms of Eqn 6 we have 

s - / 3 2  s - 132 
Co 

( s - p , ) ( s - P 2 )  + Q C ° s ( s - p , ) ( s - p 2 )  
(7) 

where p~ and P2 are the roots of the quadratic equation 

p2__ ( a  I A-/32)P "b/32al --/31a2-----0" (8) 

Inverting the Laplace transform gives 

C~ = C o ( A  + ( B  1 +B2)  exp[pl t  ] + (C 1 + C2) exp[p2t ] )  (9) 

where 

-/32Q 
PlR2 

P l -  /32 P l - - / 3 2 Q  P2 --/32 P2 --/32Q 
O 1 = - -  B 2 = C 1 = - -  C z = (10) 

Pl --P2 Pl--P2Pl  P2--Pl P2--PlP2 

It should be noted that this result does not agree with the report  by Amann and Baaske (1982). Their  
Eqns 2 and 6 are inconsistent, making their final equation, Eqn 15, invalid. 

Well-stirred-diffusion model  
In this case the solute is again well-stirred throughout the tube so that the concentration, C s, satisfies 

Eqn 3. In the tubing the solute diffuses radially in the plastic after diffusion across an aqueous layer 
adjacent to the plastic. The plastic component of the tube can be represented as a circular cylinder, 
a _< r _< b. The concentration of the solute, Cp(r,t) ,  at any radial distance, r, at a given time, t, is defined 
by: 

OCp 1 0 I rOCpl 
- -  = D -  ( 1 1 )  

at r ~ r l ~ - - ~ r  ] 
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The initial and boundary conditions are given by 

C p ( r , 0 ) = 0 ,  a <r <b 
aCp 
Or k,(KCs Cp), r = a  

OCp 
ar k°Cp' r = b 

(12) 

If we assume that the diffusion within the plastic along the tube is negligible with respect to the radial 
diffusion, then each cross-section may be considered as the cross-section of an infinitely long cylinder. 
The solution of Eqn 11 is then given by (Luikov, 1968): 

2 F 

4 
= [ a  I U6ttZna ) I x2+ -~, Bi2 .tr2Bi2[l.L2.+Bi 2] 

- 2 D  t 
7r fo KC'('r) 

[ 2 D ' r  ] 
× exp[ /z . -~- ]  d r  (13) 

where 

Bi 1 = k,a, 

are the roots of the equation 

and J and Y are Bessel functions of the first and second kind. Substituting Eqn 13 with r = a into Eqn 3 
we find 

dCs 
dt = alCs + QC° + fllCp(a't) (14) 

In abbreviated form we may write 

Cp(a,t) = E 3",f~ Cs exp - tx 2 a2 dr 
n = l  0 

(15) 

We now observe that s i n c e / ~  is increasing with n the major contribution will come from n = 1. In this 
case we find, on taking Laplace transforms of this equation, that C s satisfies an equation similar to Eqn 7 
but with a 2 replaced by 3'1 and f12 replaced by (- tz2D/a2).  
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Convectton-compartment model 
In this case account is taken of flow of the solute along the tube. The concentration will depend on 

position along the tube so that 

Cs = Cs( X,t ) and Cp = Cp( x , t  ) for O < x < l 

We assume that the solute in the solution is uniform over each cross-section and that there is no 
diffusion along the tube. The equations are now 

oco OCs 
~-a 2----= + 7ra2v - 27rak , (KCs-Cp)  (16) 

at Ox 

aCp = 27rakl( KCs _ Cp) - 27rbkoC p. (17) ,n-(b2 - a2) at 

The initial and boundary conditions are given by 

Cp(x,O)=O,O<_x<_l Cs(x ,O)=Co,  O < x < l  Cs(O, t )=Co,  O<t .  

Using the earlier notation, Eqns 16 and 17 may be simplified by expressing them in the form 

OC s OC s 
- - + c  =a~Cs+~lC  o, (18) 
Ot bx 

OCp 
= a 2 C  s + f l2Cp (19) 

Ot 

where a~ = al + Q and a~, 13 l, a 2 and f12 a r e  as defined in Eqns 3 and 4. Using Eqn 5 and substituting 
into Eqn 16 we obtain 

OC S OCs l 
- - + v  = a ~ C ~ + f l l a 2 f  Cs(x ,r )  e x p ( f l 2 ( t - r  ) dr. 
Ot dx So 

Taking Laplace transforms gives 

v--+Ox s -<  ; - £  <=Co. 

Integrating Eqn 21 with the initial condition I~'~(0) = Co/s now yields 

C~= (s--p,--)(--s-_---p2) + C  O s (s-P~)--((s--o'2) exp --~-- s - a ;  

where p~ and P~ are the roots of the equation 

p2 -- ( a l  -q- J~2)P "[- ~ 2 a ' l  -- ]~ la2  = 0 

(20) 

(21) 

-ill---a2 ) ) (22) 
S ~ [~2  

(23) 
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On taking inverse Laplace transforms, Eqn 22 gives 

C---So=B[exp(p'lt)+C~exp(p'2t)+exp t~lv H t - - v  1 - B ; e x p  P'I t -  -C ;exp  p~ t - - c  

+ e x p ( a , X ) f 0 ' ( H ( u - X ) (  l t ,  - B ,  exp(p ' l (u-X)v - C ,  e x p ( p ~ ( u - X ) ) e x p ( f l z ( t - u )  ) 

( L 2x [f _ ),/2) 
v du (24) 

where B~, C~ are the corresponding values to B1, C 1 in Eqn 10, H represents the Heaviside-step 
function and I is the modified Bessel function of the first kind. 

Convection-diffusion model 
Here, the governing equations are those specified under Well-stirred-diffusion model for C~ and 

under Convection-compartment model for Cp except that Cp = Cp(x,r,t) depends on the variable x. The 
corresponding solution for Cp is given by Eqn 13 with account being taken that C~ is also a function of x. 
Hence, C~ satisfies the equation 

< <s  ,.J0 --Ot +v Ox --a~Cs+ = Cs(xO" ) exp ~ a2 dr. (25) 

If we again assume that the major contribution comes from n = 1 in Eqn 25, solving that equation gives a 
solution for the Laplace transform similar to Eqn 22. Following the section Well-stirred-diffusion model, 
we finally obtain a solution of the same form as Eqn 24. 

Approximation of early ttme 
Cossum et al. (1978) have suggested that the diffusion kinetics of solutes may be considerably 

simplified if the duration is limited to early times when the diffusion process has penetrated the plastic 
only a small distance. The plastic is then treated as an infinite sink and the boundary condition at r = b 
in Eqn 12 is replaced by 

Cp ~ 0 as r --* ~ (26) 

Using standard techniques (see Kowaluk et al., 1985), the Laplace transform of Cp from Eqn 11 is 
given by 

s ~-/2 

Cp= (27) 
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Substituting into Eqn 1 gives the corresponding Laplace transform of C s in the form 

2k,K[ S ,[1/2 [ [  S ~1/2 '~ 

~s=C___oo _ 2kaK) a I D )  K I l l D ) a )  

s l ( s + Q +  ( o ) l / 2 K l ( ( o ) l / 2 a ) + ( s + Q ) k , K o ( ( o ) l / 2 a )  
(28) 

Inverting the Laplace transform gives C~ in terms of a real integral: 

8k2K ®exp[-Du2t](Q-Ou 2) du) 
C~ = C O 1 (Tra) 2 fo G + I - /  (29) 

where 

2 

H = ( ( - D u 2 + Q +  - 
2 

2k,Ka ) uYl(ua) + (-Du2 + Q)k'Y°(ua) (31) 

Of particular interest is the approximation for small time t which may be obtained by examining the 
expansion of C~ for large values of s. We have 

~s C°( 2k 'K1 2k2KD1/2 1 ~  ) 
= - - s  1 a s + a s 3 / ~  + "'" (32) 

Inverting gives the required approximation for small t as 

C~ 2klK 2k2gO 1/2 1 
- -  = 1 - t + - - t  3/2 + . . .  (33) 
C O a a 3¢~-  

Alternative boundary conditions 
In the above cases the contact between the solution and the plastic has not been considered perfect, 

so that the boundary condition at r = a has been taken to be one expressing transfer. If, however, the 
contact is taken as perfect, then up to a partition coefficient Cp -- KCs, the boundary conditions are given 
by 

Cp=KC s, r=a (34) 

Eqn 1 is replaced by 

dC s 2k, OCp 
dt = Q( C° - Cs) + - - Or r = a (35) 
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Again taking the simplification of small times (Eqn 26) the Laplace transform of Cs is found to be 

[[ S ~1/2 
s +Q Ko[[-~ ) a) 

aK --~ - Q)K,[  [-~ ] a) 

(36) 

Inverting the Laplace transform gives C s in terms of a real integral similar to that in the previous 
section 

4kEK [ ~ e x p [ - D u 2 t ] ( Q - D u  2) du 
Cs=C o 1 -  ( v a )  2 . t o  u - ~ - ~ - ) -  (37) 

where 

2k, 
G= - ~  )uJ,(ua) - ( - O u  2 + Q)Jo(ua)) 2 (38) 

H = (  2k ' ]  - ~  )uY,(ua) - ( - D u  2 + Q)Yo(ua) ) 2 (39) 

Of special interest is the approximation for small values of t. From Eqn 36 we have 

Cs Co( r 1 -~ - - K - - D  1 
= - -  1 - - +  - + ' "  s aD 1/2 s 1/2 a2D S (40) 

Inverting gives the required approximation for small t as 

2k, k , ( 4 k , )  
Cs K 2tl/2 ~ --~-- - D 

1 - - - - +  
C o aD 1/2 ~-~ a2D t +  --.  (41) 

Data Analysis 

Numerical and graphical analyses of the equations were conducted on a Macintosh SE/30 using the 
system Mathematica (Wolfram, 1988). 

In all studies a fixed input concentration was assumed, and the availability F = Cout/C o was plotted as 
a function of time, t (in min), for each of the models. 

The well-stirred-compartment model and the convection-compartment model are given respectively by 
Eqns 9 and 24. The well-stirred-diffusion model is given by an equation of the same form as Eqn 9 where 
only the first term, the most significant, of the series in Eqn 15 is used: in essence, in Eqn 9, a z is 
replaced by '~1 and [~2 is replaced by (- izZD/a2).  
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Similarly, the convection-diffusion model is given by an equation similar to Eqn 24 with again, a 2 
replaced by 3q and /32 replaced by (-Ix2nD/a2). 

The analytical solutions of the various models were compared with experimental data for several 
drugs *. The data were obtained using Tygon plastic tubing. The internal diameter, a, and the external 
diameter, b, of the tubing were 0.79 and 1.1 cm, respectively. Different lengths of tubing and flow rates 
were used to generate the experimental data and those corresponding to a tubing length l = 40 cm were 
selected. Given that there were a large number of parameters in each equation, the fit of the data was 
obtained empirically by an adjustment of parameters using a subdivision process. 

For each of the simulations, which examine the effects of the various parameters on the output, a 
fixed length infusion tubing set of 175 cm was assumed with an internal radius a = 0.15 cm and external 
radius b = 0.2 cm, except in the case where a comparison of the effect of changes in tubing radii was 
considered. 

Results and Discussion 

Comparison with experimental data 
A major limitation with experimental data available in the literature is that much of it has been 

developed with either a burette-plastic bag present, or with uncertain initial conditions. We have 
therefore used the data mentioned in the preceding section. The data is presented in Figs 2-4,  where it 
is compared with the analytic solutions. With the appropriate adjustment of parameters the data set and 
the analytic solutions are in good agreement. The main difference between the models is the cusp shape 
for the convection models compared with the smooth turning point in the well-stirred models. It is clear 
that the choice of model cannot be differentiated using the available data. 

The parameters in the well-stirred-compartment model and the convection-compartment model which 
had to be determined were k,, k o and K. The small time approximation of Eqn 33 gives a guide to the 
relationship between k I and K which proved to be useful: the product k,K is an approximation to the 
slope of the graph obtained from the data of the ratio Cs/C o as a function of time. The alternative 
boundary conditions do not appear as useful since the theoretical slope is initially indeterminate. It 
should, however, produce some information on the value of the diffusion coefficient D. 

The values of k, and K were obtained using an empirical subdivision process which compared the 
numerical output with the experimental data. The process was considerably simplified by relying on the 
relationship that the product k ,K  is a specific value as referred to in the previous paragraph. Instead of 
a two parameter  subdivision one proved sufficient. As expected any loss to the atmosphere takes some 
time to become significant and the parameter  k o was estimated from the 'tails' of the curves. 

The diffusion models contain the extra parameter  D. In this situation it was found that, taking a 
normalised value of D = 1, the theoretical results from Eqns 15 and 24 are of the same form as their 
compartment counterparts when only one term of the series involved is taken. The additional terms 
provide corrections to these cases but for the drugs considered the comparisons indicate these are small. 

Simulations 
Figs 5-9  show the results of simulation for a variety of conditions. In Fig. 5 the flow rate has been 

varied between 0.1 and 50 ml per rain for each of the four models. The parameters fixed in the 
simulation were the partition coefficient k =  10, k , =  0.00033 (compar tment)=  0.00015 (diffusion), 
k o = 0 (no loss to the atmosphere). In the diffusion models, L, was assumed to equal 0.5 units. It is 

* Experiments conducted when one of us (A.E.P.) was on sabbatical leave at the Umversity of Tennessee, Centre for Health 
Soences, Memphis, TN 
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observed that with low rate the availability falls rapidly with time consistent with the transient time of the 
solute within the tube. At a time corresponding to the normal transient time of solution in the tube 
(volume of the solution in the tube divided by the flow) the outflow concentration either increased or 
remained constant• At the slower flow rates the outflow concentration is relatively constant as if the 
plastic were acting as an infinite sink. With an increasing flow rate increases of concentrations of the 
solute are observed in the outflow due to the saturation of some of the surface sites in the plastic tubing. 
The appearance of these profiles is similar to that described by Roberts et al. (1980). At the low flow 
rates a relatively constant outflow concentration is observed, which is similar to much of the data shown 
by Kowaluk et al. (1982). In the latter work, Kowaluk et al. assumed that the uptake for many solutes 
could be described by an apparent first-order loss across an interface into a smk. 

An important determinant of the loss of solutes from the solution into plastics is the affinity of the 
solute for the plastic material. Fig. 6 shows the effect of varying the partition coefficient (K) between the 
values of 0.1 and 50 and the availability for a fixed flow rate of 1 ml/min. It is observed that with a low 
partition coefficient the loss of solute into the tubing is minimal. A number of authors have previously 
shown that the rate of permeation of various chemicals from aqueous solutions into plastic materials can 
be directly related to their partition coefficients. Much of this early work was conducted with polyethy- 
lene (Sercota et al., 1962; Nasim et al., 1972; Jordan and Polack, 1972; Polack et al., 1979; Roberts et al., 
1979). More recently, the importance of the partition coefficient has been used for the uptake of solutes 
into polyvinyl chloride. (Ilium and Bungaard, 1982; Atkinson and Duffal, 1991; Roberts, 1992). 

Fig. 7 illustrates the role of atmospheric loss on outflow concentration of solutes with a partition 
coefficient of 10 (solid line) and 30 (dashed line). The dimensionless rate constants for atmospheric loss 
chosen were 0, 0.00001 and 0.0001. Substantive loss to the atmosphere results in a constant outflow 

L 

0.8. 

0.6. 

0.4" 

0.2, 

260 4b0 66o 86o 10'00 12'00 14'00 
rains 

1" 

0 .8  

0.~ 

i 
o 4 

0.2" 

2b0 46o 6~o 86o zo'oo 12<oo 14'oo 
rains 

Fig 2. D r u g  up take  as a funct ion  of  t ime.  (a) D tme thy lan ihne :  we l l - s t i r r ed - co mp ar tmen t  and  wel l -s t i r red-diffusion models ,  d = 36, 

K = 0.000267, k o = 0 00001, 1 = 40 cm, a = 0.395 cm, b = 0.55 cm, v = 0.959 c m / m i n .  (b) Dimethy laml ine :  c o n v e c t i o n - c o m p a r t m e n t  

and  convect ion-di f fus ion mode l s  d = 38, K = 0.000135, k o = 0.00001, l = 40 cm, a = 0 395 cm, b = 0.55 cm, v = 0.959 c m / m m .  



362 

1 ~ 
0.8 

0.6 

0.4 

0.2 

1 ~ 
0.8 

O.E 

0.4. 

0.2- 

260 460 ~60 860 ~000 1200 ~400 
t mlns 

2~o 460 660 860 lo%o 12%o 14'oo 

Fig. 3 D r u g  up take  as a funct ion of  t ime.  (a)  4 - M e t h y l a c e t o p h e n o n e .  we l l - s t i r r ed - co mp ar tmen t  and  well-starred-diffusion mode l s  

d = 36, K = 0.000267, k o = 0 00001, l = 40 cm, a = 0 395 cm, b = 0.55 cm, L' = 0 979 c m / m i n .  (b) 4 - M e t h y l a c e t o p h e n o n e  convec-  

t i o n - c o m p a r t m e n t  and  convect ion-di f fus ion mode l s  d = 13 5, K = 0.00023, k o = 0 000012, / = 40 cm, a = 0 395 cm, b = 0.55 cm, 

L, = 0 979 c m / m m .  

O. 

O. 

O. 

0 

0.8 

0.6 

0.4 

0.2 

260 460 660 860 10%0 12%0 ~4'00 
I:: . t i n s  

200 400 600 800 1000 1200 1400 

mlns 

Fig. 4. D r u g  up take  as a funct ion of  t~me. (a)  N-E thy lan ihne :  we l l - s t i r r ed - co mp ar tmen t  and  wel l -s t i r red-diffusion models ,  d = 12, 

K = 0.00033, k o = 0.0000, l = 40 era, a = 0.395 cm,  b = 0.55 cm,  v = 0.959 c m / m i n  (b) N-Ethylani l ine:  c o n v e c t i o n - c o m p a r t m e n t  

and  convect ion-di f fus ion models ,  d = 15, K = 0.00016, k o = 0.0000, 1 = 40 cm, a = 0.395 cm, b = 0.55 em, t, = 0.959 e m / m i n .  
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concentration with time. Such behaviour is consistent with the tubing acting as an interfacial barrier 
between the solution and the outside atmosphere. We have previously examined the importance of 
atmospheric loss in terms of both the organic nitrates (Roberts et al., 1983) and clomethiazole (Kowaluk 
et al., 1984). In each of these instances, the affinity for the polyvinyl chloride tubing was more important 
than for loss into the atmosphere. 

An important parameter determining the likely outflow concentration-time profiles is the diffusivity of 
the solute within the plastic. In Fig. 8, the effect of varying dimensionless diffusivities is shown using 
values of 0.05, 0.5 and 5 for a solute with a constant partition coefficient of 10 and no loss to the 
atmosphere (k o = 0). The higher the diffusivities the more rapidly the drug moves into the plastic and 
the more rapidly does the plastic become saturated. Hence, the output concentration returns to the input 
value more quickly. 

Fig. 9 shows the importance of the dimensions of the system. Using solutes with partition coefficients 
of 10 (continuous line) and 30 (dashed line) and no loss to the atmosphere (k o = 0), the outflow 
concentrations observed with time on the doubling of the internal and external radius of the tubing are 
illustrated in Fig. 6. It is observed that with larger tubing radius, but with the same thickness and same 
flow speeds u the outflow concentrations are larger. Kowaluk et al. (1982) showed that the availability 
was directly related to the radius and that a lower availability was observed as the radius was increased 
for any given flow rate. They showed a linear relationship between the logarithm of the availability and 
the internal radius of the tubing. The present results are not inconsistent, since Kowaluk et al. used a 
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fixed volumetric flow rate which depends on the inner radius of the tube and they did not take the 
thickness of the plastic tube into account. 

One of the major outcomes expressed in Figs 5-9 is that the choice of model does not greatly affect 
the shapes of profiles for outflow concentration vs time with variation of parameters such as flow rate, 
partition coefficient, loss to the atmosphere and tubing radius. The main qualitative difference between 
the models is that the minimum of the well-stirred-compartment model is smooth, whereas that of the 
convection models is cusp-like. In addition, the diffusion model exhibits a more rapid rise after the 

t.0 

¢(In) 
OJl 

F 
0.6 

(a) 

0.4 

,.I.4 

t mln'j 

(b) 
LO 

CC In) O.ll 

F 0.6 ~I  ~ j .4 

0.4, 

0,2 J.4 
, i,J.,,= 

400 600 800 tOO0 1200 1400 t 
t OR I(~1 

(c) (d) 

C( m 

,F l 0.. 
¢(m 0.11 F 

0.6 0.6 ~ ~.4 

0.4 "~'= 0.4 _~.4 

.I.4 0.2. 
0.2 .]~,,2 j . 4  

3)0 400 600 ~ IO00 1200 1400 t ~00 ~ 0  (~00 ~ }  1000 I?.00 t400 t 
I msslt i tarns 

Fig 9 Effect  o f  t ub ing  r a d . ,  a and  b, on  avai labdtty.  (a)  W e l l - s t i r r e d - c o m p a r t m e n t  model ,  (b) c o n v e c t i o n - c o m p a r t m e n t  mode l ,  (c) 

wel l - s t i r red-d i f fus ion  model ,  (d) convectlon-d~ffUSlOn model ,  d =  10 ( ), d =  30 ( - - - - - - ) .  k,  = 0 . 0 0 0 3 3  (compar tmen t ) ,  
k t ~ 0 00015 (diffusion),  k o = 0.00, D --- 0 5, l = 175 cm, a = 0.15 cm, b = 0.2 cm and a = 0 3 crn, b = 0.4 cm, t' = 1 c m / m m  



366 

minimum is reached than does the well-stirred model consistent with saturation of sites close to the 
surface to which the solution is in contact. 

However, the empirically obtained values of the parameters differ for each model. If these values can 
be obtained experimentally then a determination of which model is the most appropriate would be made 
on quantitative grounds. 

Conclusion 

Analytic solutions have been obtained for four models of the uptake of solutes during flow through 
plastic tubing, the well-stirred compartment, well-stirred diffusion, convection compartment and convec- 
tion diffusion models. As indicated by Figs 2-4, good agreement has been obtained with the experimen- 
tal data. The convection model appears to be the most satisfactory with the cusp or sharp turning point 
being of special significance. 

The theoretical values do not appear to be affected a great deal when diffusivity, with D = 1 is taken 
into account, but further analysis should be made for other values of D. 

The enable the models to be useful as predictors of drug loss it is necessary to have predetermined 
values of the various parameters. The qualitative information illustrated in Figs 5-9 should assist in 
estimating how these parameters may be obtained from known data and other well-established physical 
and chemical properties of the drugs involved. Once this is done then which of the models best describes 
the process can be determined. 

Glossary 

Symbol Meaning 

t 
C~ 
Cp 
Csurf 
K 
U 

d 

b 
k, 
ko 
Q 
al,az,fll,fl2 
T, U 

A I,B1,B2,CI,C z 
C 
s 

r 

x 

D 
J,Y,I 
C',a' ,  etc. 
H 

time 
concentration in solute 
concentration in plastic 
concentration on surface of plastic 
apparent coefficient 
rate of flow 
inner radius of plastic tube 
outer radius of plastic tube 
rate of transfer across inner surface 
rate of transfer across outer surface 
flow rate 
defined constants 
dummy variables of integration 
integration constants 

Laplace transform of C 
Laplace variable 
radial distance from centre of tube 
distance along tube 
diffusion coefficient in plastic 
Bessel functions 
constants of corresponding model 
Heaviside's function 
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